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Over the last three decades, much effort has been focused on
the development of chiral catalysts as means to synthesize molecules
with defined handedness.1 Computational chemistry methods2 are
increasingly practical for the selection of chiral ligands used in
asymmetric transformations3 due to improvements in their theoreti-
cal foundations coupled with increased computing speeds. In this
report, we describe a quantitative structure selectivity relationship
(QSSR) study of the asymmetric addition of Et2Zn to benzaldehyde
catalyzed by chiralâ-amino alcohols (Figure 1). Related QSAR
methods have received a great deal of attention with respect to the
design of pharmaceutical agents,4,5 but not with respect to small-
molecule catalysts.6,7

To generate a valid QSSR model, we required experimental
selectivities for a set of catalysts with similar characteristics. Since
the report of DAIB (9) as a highly enantioselective catalyst,8 a large
number of related compounds have been examined.9 We selected
18 â-amino alcohols (Figure 2) with similar reactivities and that
encompass a wide enantioselectivity range. The mechanism of this
reaction has also been studied extensively,10 andµ-oxo transition
structures have been proposed. Our goal was to correlate the
structures of the aminoalkoxide zinc catalysts (Figure 1) with their
selectivities in the addition of Et2Zn to PhCHO. Unfortunately,
calculations of the catalyst ground states afforded planar Zn
geometries, which do not reflect the geometry in the catalysts as
the reaction proceeds. Thus, several transition structures (two are
shown in Figure 1) were located using PM3 methods10c,11to obtain
an accurate picture of the chiral catalyst structures. While the PM3
transition-structure energies do not always correlate to product
selectivity,10f the geometries are similar to those from much more
time-consuming analyses (DFT, MP2).10b

For the subsequent analysis, catalyst geometries found in the
anti Sstructures were used. The structures were aligned using the
O, Zn, and O atoms (Figure 1, bold) and were divided into appro-
priate training and prediction sets (Table 1). To define a suitable
dependent variable for the QSSR, the enantioselectivities obtained
with the different catalysts for the reaction in Figure 1 were
translated into∆G values. The QSSR models were then constructed
based on quantum mechanical models.12 The aligned structures were
placed on a grid and a set of PM313 probe interaction energies
(PIEs) was computed separately for each structure using a carbon
2s electron probe at various grid points near the catalyst. Only the
contributions from the catalyst portion to the PIEs were used; those
from the Me2Zn and PhCHO substrates were masked.

The PIE data are the pool of independent variables from which
linear regression equations of∆G were generated. To prevent over-
fitting of the training set, regressions were constructed using only
two grid points at a time. The two-variable fits were obtained using

a least-squares regression, with variables selected to optimize
internal model fitness via simulated annealing. Results are reported
for thebest indiVidual two-variable model with the lowest standard
deviation of regression and for anaVeragemodel comprising a
weighted combination of all accepted two-variable regressions.

A model obtained from QSSR calculations using theâ-ami-
noalkoxide catalysts is shown in Table 1. For thebest indiVidual
model the calculated selectivity is expressed as∆Gfit ) a + c1-
(PIE1) + c2(PIE2). The two sets of PIE values appear to provide
statistically independent information (r ) 0.18). Most importantly,
there is a strong relationship between the observed (∆G) and
calculated (∆Gfit) selectivity for the trainingandprediction sets in
Table 1. The model easily distinguishes among catalysts of low,
moderate, and high selectivity.

The robustness of this method were established by a series of
experiments (Table 2). As the grid spacing (2.0, 1.3, and 0.7 Å)
was reduced, the calculated values (∆Gfit) converged onto the
experimental values. When the orientation of the grid was changed
with respect to the aligned set of structures, theaVeragemodels
(grid1 vs grid2) were remarkably similar, also indicating that the
calculations have converged.
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Figure 1. â-Aminoalkoxide-catalyzed Et2Zn addition to PhCHO.

Figure 2. â-Amino alcohol catalysts.
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Comparison of thebest indiVidual vs aVeragemodels indicates
that the latter provide consistently better results. The most reliable
external predictions occur when these models yield similar results
and grid point arrangements. For example, the grid points in the
0.7 Å best indiVidual model provide the major components of the
correspondingaVerage model (Figure 3). Moreover, the tight
spacing of theaVeragemodel grid points indicates that PIE values
from nearby catalyst components reproducibly correlate with
selectivity. In a cross-validation study, several different training/
prediction sets were generated, and similar results were obtained.

Analysis of the positions of the grid points identified in the QSSR
model (Figure 3) provides insight into the catalyst features important
to the stereochemical induction. One point was found near the
sterically large bridging dimethylmethylene of DAIB (9) which is
also where many other catalysts position large bulky groups.
Examination of the transition structures leading to the enantiomeric
products indicates this large group is more readily accommodated
in theanti Srather than theanti R, syn R, or syn Sapproaches due
to steric interactions. A second grid point was located on the bottom
face of the five-memberedâ-aminoalkoxide zinc chelate. Nearby
catalyst components destabilize thesyn R structure via steric
interactions and stabilize theanti S structure via electrostatic
interactions with the carbonyl dipole. We conclude that the QSSR
model can correlate chemically relevant portions of the catalyst
structure with the observed selectivities.

In summary, we have determined that grid-based QSAR methods
can be used to generate statistically valid models that predict the
selectivities of catalysts directly from their structure. The strength
of the present method is that empirical models obtained from a
small set of experimentally determined selectivities and relatively
simple theoretical calculations yield selectivity predictions that are
as accurate as those derived from much higher-level calculations
(DFT, MP2) of transition-structure isomers. Only minutes of
computing time are required, and easily interpretable models are
obtained which provide realistic and insightful predictions.
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Table 1. QSSR Calculations Using Catalysts from 1-18a

expt. anti S1 best anti S1 avg

cmpd % eeb ∆Gc % eefit ∆Gfit
d PIE1

e PIE2
e % eefit ∆Gfit

Training Setf
1 0 0.00 28 0.32 25.92 4.76 26 0.30
3 59 0.76 70 0.97 21.79 3.54 68 0.92
4 93 1.85 89 1.61 20.62 4.44 90 1.63
5 49 0.60 24 0.27 26.25 4.87 34 0.39
6 66 0.88 72 1.00 21.92 3.72 70 0.96
7 73 1.04 72 1.00 24.28 5.44 76 1.10
8 81 1.26 79 1.18 23.15 5.10 81 1.26
9 98 2.56 98 2.44 18.39 5.11 98 2.47
10 95 2.04 97 2.35 18.53 4.95 97 2.38
11 98 2.56 97 2.35 19.14 5.39 97 2.37
12 96 2.17 97 2.26 21.55 6.94 96 2.18
13 94 1.94 91 1.69 20.92 4.88 93 1.83
17 94 1.94 95 2.02 21.35 6.12 93 1.89
18 97 2.33 97 2.43 20.97 6.97 96 2.23

Prediction Setg
2 3 0.03 11 0.12 27.91 5.67 5 0.06
14 86 1.43 81 1.25 21.45 4.05 76 1.10
15 98 2.56 99 3.36 15.29 5.36 99 2.82
16 63 0.83 83 1.31 23.66 5.85 75 1.09

a Catalyst geometries taken fromanti S transition structures. Grid1
orientation, 0.7 Å grid spacing.b (S)-product.c The % ee is converted to
∆G (kcal/mol) using ∆G ) RT ln K, K is ratio of the (R) and (S)
enantiomers.d ∆Gfit ) a + c1(PIE1) + c2(PIE2); a ) 5.48 kcal/mol,c1 )
-0.27,c2 ) 0.36.e Probe interaction energies (kcal/mol) at the two grid
points identified in the QSSR analysis.f best,avg: SD) 0.23, 0.17 kcal/
mol; R2 ) 0.93, 0.95.g best,avg: RMSE) 0.49, 0.29 kcal/mol;R2 ) 0.72,
0.90; CC) 0.95, 0.96.

Table 2. Statistical Summary of the QSSR Models

TSa/grid spacing model RMSEb R2 c CCd predicted R2 e N f

grid2/2.0 Å best 0.81 0.23 0.50 0.32 54
avg 1.27 -0.87 -0.29 -0.66 54

grid2/ 1.3 Å best 0.29 0.90 0.99 0.92 174
avg 0.34 0.86 0.98 0.88 174

grid2/ 0.7 Å best 0.34 0.86 0.93 0.88 1077
avg 0.30 0.90 0.95 0.91 1077

grid1/0.7 Å best 0.49 0.72 0.95 0.75 1036
avg 0.29 0.90 0.96 0.92 1036

a Grid1 and grid2 refer to the two different grid orientations.b RMS error
between prediction set∆G and∆Gfit. c Coefficient of multiple determination
(percentage of variance accounted for by the model).d Correlation coef-
ficient (how well the prediction set selectivity order is calculated)e Pre-
diction R2 from training set mean.f Number of sampled gridpoints.

Figure 3. Models from QSSR calculations (grid1, 0.7 Å) superimposed
on theanti Stransition structure from the DAIB ligand (9). Left = aVerage
model; Right =best indiVidual model. Blue) ee increases with increasing
PIE values; Red) ee decreases.
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